home *** CD-ROM | disk | FTP | other *** search
-
-
-
- DDDDGGGGEEEEQQQQLLLLFFFF((((3333FFFF)))) DDDDGGGGEEEEQQQQLLLLFFFF((((3333FFFF))))
-
-
-
- NNNNAAAAMMMMEEEE
- DGEQLF - compute a QL factorization of a real M-by-N matrix A
-
- SSSSYYYYNNNNOOOOPPPPSSSSIIIISSSS
- SUBROUTINE DGEQLF( M, N, A, LDA, TAU, WORK, LWORK, INFO )
-
- INTEGER INFO, LDA, LWORK, M, N
-
- DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( LWORK )
-
- PPPPUUUURRRRPPPPOOOOSSSSEEEE
- DGEQLF computes a QL factorization of a real M-by-N matrix A: A = Q * L.
-
-
- AAAARRRRGGGGUUUUMMMMEEEENNNNTTTTSSSS
- M (input) INTEGER
- The number of rows of the matrix A. M >= 0.
-
- N (input) INTEGER
- The number of columns of the matrix A. N >= 0.
-
- A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
- On entry, the M-by-N matrix A. On exit, if m >= n, the lower
- triangle of the subarray A(m-n+1:m,1:n) contains the N-by-N lower
- triangular matrix L; if m <= n, the elements on and below the
- (n-m)-th superdiagonal contain the M-by-N lower trapezoidal
- matrix L; the remaining elements, with the array TAU, represent
- the orthogonal matrix Q as a product of elementary reflectors
- (see Further Details). LDA (input) INTEGER The leading
- dimension of the array A. LDA >= max(1,M).
-
- TAU (output) DOUBLE PRECISION array, dimension (min(M,N))
- The scalar factors of the elementary reflectors (see Further
- Details).
-
- WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
- On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
-
- LWORK (input) INTEGER
- The dimension of the array WORK. LWORK >= max(1,N). For optimum
- performance LWORK >= N*NB, where NB is the optimal blocksize.
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value
-
- FFFFUUUURRRRTTTTHHHHEEEERRRR DDDDEEEETTTTAAAAIIIILLLLSSSS
- The matrix Q is represented as a product of elementary reflectors
-
- Q = H(k) . . . H(2) H(1), where k = min(m,n).
-
- Each H(i) has the form
-
-
-
- PPPPaaaaggggeeee 1111
-
-
-
-
-
-
- DDDDGGGGEEEEQQQQLLLLFFFF((((3333FFFF)))) DDDDGGGGEEEEQQQQLLLLFFFF((((3333FFFF))))
-
-
-
- H(i) = I - tau * v * v'
-
- where tau is a real scalar, and v is a real vector with
- v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-k+i-1) is stored on exit in
- A(1:m-k+i-1,n-k+i), and tau in TAU(i).
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- PPPPaaaaggggeeee 2222
-
-
-
-